题目内容

12.已知矩阵A=$[\begin{array}{l}{1}&{2}\\{2}&{1}\end{array}]$,B=$[\begin{array}{l}{0}&{1}\\{1}&{0}\end{array}]$,求满足条件(AB)$\overrightarrow{a}$=λ$\overrightarrow{a}$特征向量$\overrightarrow{a}$.

分析 利用矩阵乘法公式求出AB=$[\begin{array}{l}{2}&{1}\\{1}&{2}\end{array}]$,由f(λ)=|λE-AB|=$|\begin{array}{l}{λ-2}&{-1}\\{-1}&{λ-2}\end{array}|$=(λ-2)2-1=0,求出矩阵AB的特征根,由此能求出满足条件(AB)$\overrightarrow{a}$=λ$\overrightarrow{a}$特征向量.

解答 解:∵矩阵A=$[\begin{array}{l}{1}&{2}\\{2}&{1}\end{array}]$,B=$[\begin{array}{l}{0}&{1}\\{1}&{0}\end{array}]$,
∴AB=$[\begin{array}{l}{1}&{2}\\{2}&{1}\end{array}]$$[\begin{array}{l}{0}&{1}\\{1}&{0}\end{array}]$=$[\begin{array}{l}{2}&{1}\\{1}&{2}\end{array}]$,
∴f(λ)=|λE-AB|=$|\begin{array}{l}{λ-2}&{-1}\\{-1}&{λ-2}\end{array}|$=(λ-2)2-1=0,
解得矩阵AB的特征根为λ1=1,λ2=3,
设λ=1对应的特征向量$\overrightarrow{α}$=$[\begin{array}{l}{x}\\{y}\end{array}]$,
∵(AB)$\overrightarrow{a}$=λ$\overrightarrow{a}$,∴$[\begin{array}{l}{2}&{1}\\{1}&{2}\end{array}]$$[\begin{array}{l}{x}\\{y}\end{array}]$=$[\begin{array}{l}{x}\\{y}\end{array}]$,即$[\begin{array}{l}{2x+y}\\{x+2y}\end{array}]=[\begin{array}{l}{x}\\{y}\end{array}]$,
解得x=-y,
∴满足条件(AB)$\overrightarrow{a}$=λ$\overrightarrow{a}$特征向量$\overrightarrow{a}$=$[\begin{array}{l}{1}\\{-1}\end{array}]$.
∴设λ=3对应的特征向量$\overrightarrow{α}$=$[\begin{array}{l}{x}\\{y}\end{array}]$,
∵(AB)$\overrightarrow{a}$=λ$\overrightarrow{a}$,∴$[\begin{array}{l}{2}&{1}\\{1}&{2}\end{array}]$$[\begin{array}{l}{x}\\{y}\end{array}]$=3$[\begin{array}{l}{x}\\{y}\end{array}]$,即$[\begin{array}{l}{2x+y}\\{x+2y}\end{array}]=[\begin{array}{l}{3x}\\{3y}\end{array}]$,
解得x=y,
∴满足条件(AB)$\overrightarrow{a}$=λ$\overrightarrow{a}$特征向量$\overrightarrow{a}$=$[\begin{array}{l}{1}\\{1}\end{array}]$.

点评 本题考查矩阵的特征向量的求法,考查矩阵的特征向量、特征值等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网