题目内容
12.已知矩阵A=$[\begin{array}{l}{1}&{2}\\{2}&{1}\end{array}]$,B=$[\begin{array}{l}{0}&{1}\\{1}&{0}\end{array}]$,求满足条件(AB)$\overrightarrow{a}$=λ$\overrightarrow{a}$特征向量$\overrightarrow{a}$.分析 利用矩阵乘法公式求出AB=$[\begin{array}{l}{2}&{1}\\{1}&{2}\end{array}]$,由f(λ)=|λE-AB|=$|\begin{array}{l}{λ-2}&{-1}\\{-1}&{λ-2}\end{array}|$=(λ-2)2-1=0,求出矩阵AB的特征根,由此能求出满足条件(AB)$\overrightarrow{a}$=λ$\overrightarrow{a}$特征向量.
解答 解:∵矩阵A=$[\begin{array}{l}{1}&{2}\\{2}&{1}\end{array}]$,B=$[\begin{array}{l}{0}&{1}\\{1}&{0}\end{array}]$,
∴AB=$[\begin{array}{l}{1}&{2}\\{2}&{1}\end{array}]$$[\begin{array}{l}{0}&{1}\\{1}&{0}\end{array}]$=$[\begin{array}{l}{2}&{1}\\{1}&{2}\end{array}]$,
∴f(λ)=|λE-AB|=$|\begin{array}{l}{λ-2}&{-1}\\{-1}&{λ-2}\end{array}|$=(λ-2)2-1=0,
解得矩阵AB的特征根为λ1=1,λ2=3,
设λ=1对应的特征向量$\overrightarrow{α}$=$[\begin{array}{l}{x}\\{y}\end{array}]$,
∵(AB)$\overrightarrow{a}$=λ$\overrightarrow{a}$,∴$[\begin{array}{l}{2}&{1}\\{1}&{2}\end{array}]$$[\begin{array}{l}{x}\\{y}\end{array}]$=$[\begin{array}{l}{x}\\{y}\end{array}]$,即$[\begin{array}{l}{2x+y}\\{x+2y}\end{array}]=[\begin{array}{l}{x}\\{y}\end{array}]$,
解得x=-y,
∴满足条件(AB)$\overrightarrow{a}$=λ$\overrightarrow{a}$特征向量$\overrightarrow{a}$=$[\begin{array}{l}{1}\\{-1}\end{array}]$.
∴设λ=3对应的特征向量$\overrightarrow{α}$=$[\begin{array}{l}{x}\\{y}\end{array}]$,
∵(AB)$\overrightarrow{a}$=λ$\overrightarrow{a}$,∴$[\begin{array}{l}{2}&{1}\\{1}&{2}\end{array}]$$[\begin{array}{l}{x}\\{y}\end{array}]$=3$[\begin{array}{l}{x}\\{y}\end{array}]$,即$[\begin{array}{l}{2x+y}\\{x+2y}\end{array}]=[\begin{array}{l}{3x}\\{3y}\end{array}]$,
解得x=y,
∴满足条件(AB)$\overrightarrow{a}$=λ$\overrightarrow{a}$特征向量$\overrightarrow{a}$=$[\begin{array}{l}{1}\\{1}\end{array}]$.
点评 本题考查矩阵的特征向量的求法,考查矩阵的特征向量、特征值等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.
| A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{2}$ | D. | $\frac{5π}{6}$ |
| 年份 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 |
| 年份代号x | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| 销售价格y | 3 | 3.4 | 3.7 | 4.5 | 4.9 | 5.3 | 6 |
(Ⅱ)利用(Ⅰ)中的回归方程,分析2010年至2016年该市新开楼盘平均销售价格的变化情况,并预测该市2018年新开楼盘的平均销售价格.
附:参考数据及公式:$\sum_{i=1}^{7}{x}_{i}{y}_{i}=137.2$,$\widehat{b}=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n•\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}=\overline{y}-\widehat{b}\overline{x}$.
| A. | $\frac{1}{27}$ | B. | $\frac{2}{3}$ | C. | $\frac{8}{27}$ | D. | $\frac{4}{9}$ |