题目内容
设向量,若(tÎR),则的最小值为( )
A. B.1 C. D.
A
在等差数列{an}中,已知a1=2,a2+a3=13,则a5=
A.13 B.14 C.15 D.16
已知|x-a|<b的解集为{x|2<x<4}, 则实数a等于( )
A.1 B. 2 C. 3 D. 4
设函数.
(1)若在时有极值,求实数的值和的极大值;
(2)若在定义域上是增函数,求实数的取值范围.
已知a、b、c为△ABC的三边长,若满足(a+b-c)(a+b+c)=ab,则∠C的大小为( )
A.60° B.90°
C.120° D.150°
函数的单调递增区间是_____________________________
某班一天上午安排语、数、外、体四门课,其中体育课不能排在第一、第四节,则不同排法的种数为 ( )
A.24 B.22 C.20 D.12
已知中心在原点的双曲线C的右焦点为(2,0),右顶点为。
(1) 求双曲线C的方程;
(2) 若直线l:与双曲线C恒有两个不同的交点A和B,且(其中O为原点),求k的取值范围。
某大学开设甲、乙、丙三门选修课,学生是否选修哪门课程互不影响,已知某学生只选修甲的概率为0.08,只选修甲和乙的概率是0.12,至少选修一门的概率是0.88,用ξ表示该学生选修的课程门数和没有选修的课程门数的乘积.
(1)记“函数f(x)=x2+ξx为R上的偶函数”为事件A,求事件A的概率;
(2)求ξ的分布列和数学期望.