题目内容
从边长为10 cm×16 cm的矩形纸板的四个角,截去四个相同的小正方形,做成一个无盖的盒子,则盒子的容积最大值为( )A.121 cm2
B.169 cm2
C.144 cm2
D.196 cm2
解析:设截去的小正方形边长为x cm,则V=(10-2x)(16-2x)x=4(5-x)(8-x)x=4(x3-13x2+40x)(0<x<5),
V′=4(3x2-26x+40)=4(x-2)(3x-20),令V′=0,则取x=2时取最大值,最大值为?
(10-4)(16-4)·2=144.故选C.
答案:C
练习册系列答案
相关题目
从边长为10 cm×16 cm的矩形纸板的四个角,截去四个相同的小正方形,做成一个无盖的盒子,盒子的最大容积为______cm3( )
| A、2 | ||
B、
| ||
| C、144 | ||
D、
|