题目内容
函数的递增区间是 .
[0,+∞) (写成(0,+∞)也对);
如图所示,F1,F2是双曲线-=1(a>0,b>0)的两个焦点,以坐标原点O为圆心,|OF1|为半径的圆与该双曲线左支的两个交点分别为A,B,且△F2AB是等边三角形,则双曲线的离心率为( )
A.+1 B.+1 C. D.
由①y=2x+5是一次函数;②y=2x+5的图像是一条直线;③一次函数的图像是一条直线.写一个“三段论”形式的正确推理,则作为大前提、小前提和结论的分别是( )
A.②①③ B.③①②
C.①②③ D.②③①
已知函数f(x)=ax2+1(a>0),g(x)=x3+bx.
(1)若曲线y=f(x)与曲线y=g(x)在它们的交点(1,c)处具有公共切线,求a,b的值;
(2)当a=3,b=-9时,若函数f(x)+g(x)在区间[k,2]上的最大值为28,求k的取值范围.
在对数函数中,下列描述正确的是( )
①定义域是、值域是R ②图像必过点(1,0).
③当时,在上是减函数;当时,在上是增函数.
④对数函数既不是奇函数,也不是偶函数.
A. ①② B. ②③ C. ①②④ D. ①②③④
在中,,,,则的面积是
A. B. C. D.
已知函数
(1)求函数的最小正周期;
(2)求函数的最小值及相应的值。
已知双曲线的离心率为,焦点到渐近线的距离为
(1)求双曲线C的方程;
(2)已知直线与双曲线C交于不同的两点A,B,且线段AB的中点在圆上,求的值.