题目内容

甲、乙、丙3人投篮,投进的概率分别是,  ,  .(Ⅰ)现3人各投篮1次,求3人都没有投进的概率;(Ⅱ)用ξ表示乙投篮3次的进球数,求随机变量ξ的概率分布及数学期望Eξ
(Ⅰ)         (Ⅱ)

【错解分析】判断事件的运算,即是至少有一个发生,还是同时发生,分别运用相加或相乘事件
【正解】(Ⅰ)记"甲投篮1次投进"为事件A1, "乙投篮1次投进"为事件A2, "丙投篮1次投进"为事件A3,"3人都没有投进"为事件A.则P(A1)= P(A2)= P(A3)=
P(A) = P()=P(P(P()
= [1-P(A1)] ·[1-P (A2)] ·[1-P (A3)]=(1-)(1-)(1-)=
∴3人都没有投进的概率为 .
(Ⅱ)解法一: 随机变量ξ的可能值有0,1,2,3, ξ~ B(3, ),
P(ξ=k)=C3k()k()3-k  (k=0,1,2,3) , Eξ="np" = 3× =  .
解法二: ξ的概率分布为:
ξ
0
1
2
3
P




Eξ=0×+1×+2×+3×=   .
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网