题目内容

有n个小球,将它们任意分成两堆,求出这两堆小球球数的乘积,再将其中一堆小球任意分成两堆,求出这两堆小球球数的乘积,如此下去,每次都任选一堆,将这堆小球任意分成两堆,求出这两堆小球球数的乘积,直到不能再分为止,则所有乘积的和为


  1. A.
    n!
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    nn
B
分析:用特殊值法,假设每次分出一个,分别求出每一次的乘积,然后等差数列的性质相加可得答案.
解答:假设每次分堆时都是分出1个球,
第一次分完后应该一堆是1个球,另一堆n-1个,则乘积为1×(n-1)=n-1;
第二次分完后应该一堆是1个球,另一堆n-2个,则乘积为1×(n-2)=n-2;
依此类推
最后一次应该是应该一堆是1个球,另一堆1个,则乘积为1×1=1;
设乘积的和为Tn
则Tn=1+2+…+(n-1)=
故选:B.
点评:本题主要考查等差数列的求和.属基础题.在解答选择填空题时,特殊值法是常用方法之一.解决本题的关键在于特殊值法的应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网