题目内容

2.设函数f(x)=|x|,g(x)=lg(ax2-4x+1),若对任意x1∈R,都存在在x2∈R,使f(x1)=g(x2),则实数a的取值范围是(  )
A.(-∞,4]B.(0,4]C.(-4,0]D.[0,+∞)

分析 由题意求出f(x)的值域,再把对任意x1∈R,都存在x2∈R,使f(x1)=g(x2)转化为函数g(x)的值域包含f(x)的值域,进一步转化为关于a的不等式组求解.

解答 解:?x1∈R,f(x)=|x|∈[0,+∞),
∵?x2∈R,使f(x1)=g(x2),
∴g(x)=lg(ax2-4x+1)的值域包含[0,+∞),
当a=0时,g(x)=lg(-4x+1),显然成立;
当a≠0时,要使g(x)=lg(ax2-4x+1)的值域包含[0,+∞),
则ax2-4x+1的最小值小于等于1,
∴$\left\{\begin{array}{l}{a>0}\\{\frac{4a-(-4)^{2}}{4a}≤1}\end{array}\right.$,即a>0.
综上,a≥0.
∴实数a的取值范围是[0,+∞).
故选:D.

点评 本题考查函数的值域,体现了数学转化思想方法,正确理解题意是解答该题的关键,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网