题目内容
某校50名学生参加2013年全国数学联赛初赛,成绩全部介于90分到140分之间.将成绩结果按如下方式分成五组:第一组
,第二组
, ,第五组
.按上述分组方法得到的频率分布直方图如图所示.
![]()
(1)若成绩大于或等于100分且小于120分认为是良好的,求该校参赛学生在这次数学联赛中成绩良好的人数;
(2)若从第一、五组中共随机取出两个成绩,求这两个成绩差的绝对值大于30分的概率.
(1)
人;(2)
.
【解析】
试题分析:(1)根据评论分布直方图,频数=频率
总人数,得到所求良好的人数;(2)首先找到在第一和第五组的人数分别是
人(用
、
、
表示)和
人(用
、
、
、
表示),用列举法找到基本事件总数
种,事件事件“
”所包含的基本事件个数有
种,所以所求事件的概率为![]()
试题解析:(1)由频率分布直方图知,成绩在
内的人数为:
(人)
所以该班成绩良好的人数为27人. 5分
(2)由频率分布直方图知,成绩在
的人数为
人,设为
、
、
;
成绩在
的人数为
人,设为
、
、
、
.
若
时,有
3种情况;
若
时,有
6种情况;
若
分别在
和
内时,共有12种情况.![]()
所以基本事件总数为
种,事件“
”所包含的基本事件个数有
种.
∴
(
)
. 12分
考点:1.频率分布直方图;2.古典概型.
练习册系列答案
相关题目
已知向量
,则它们的夹角是
| A. | B. | C. | D. |