题目内容

若log2[log
1
2
(log2x)]=log3[log
1
3
(log3y)]=log5[log
1
5
(log5z)]
=0,则x、y、z的大小关系是(  )
A、z<x<y
B、x<y<z
C、y<z<x
D、z<y<x
分析:由题意知log
1
2
(log2x) =log
1
3
(log3y)
=log
1
5
(log5z)
=1,所以log2x=
1
2
log3y=
1
3
log5z=
1
5
,由此可知x、y、z的大小关系.
解答:解:∵log2[log
1
2
(log2x)]=log3[log
1
3
(log3y)]=log5[log
1
5
(log5z)]
=0,
log
1
2
(log2x) =log
1
3
(log3y)
=log
1
5
(log5z)
=1,
log2x=
1
2
log3y=
1
3
log5z=
1
5

x=
2
y=
33
,z=
55

∴z<x<y.
故选A.
点评:本题考查对数的运算法则,解题时要结合题设条件注意公式的灵活运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网