题目内容
若log2[log
(log2x)]=log3[log
(log3y)]=log5[log
(log5z)]=0,则x、y、z的大小关系是( )
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 5 |
| A、z<x<y |
| B、x<y<z |
| C、y<z<x |
| D、z<y<x |
分析:由题意知log
(log2x) =log
(log3y)=log
(log5z)=1,所以log2x=
,log3y=
,log5z=
,由此可知x、y、z的大小关系.
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 5 |
解答:解:∵log2[log
(log2x)]=log3[log
(log3y)]=log5[log
(log5z)]=0,
∴log
(log2x) =log
(log3y)=log
(log5z)=1,
∴log2x=
,log3y=
,log5z=
,
∴x=
,y=
,z=
,
∴z<x<y.
故选A.
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 5 |
∴log
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 5 |
∴log2x=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 5 |
∴x=
| 2 |
| 3 | 3 |
| 5 | 5 |
∴z<x<y.
故选A.
点评:本题考查对数的运算法则,解题时要结合题设条件注意公式的灵活运用.
练习册系列答案
相关题目