题目内容
13.设x1、x2是方程x2+3$\sqrt{3}$x+4=0的两根,求arctanx1+arctanx2的值.分析 由条件利用韦达定理求得x1+x2 =-3$\sqrt{3}$,x1•x2=4,再利用两角和的正切公式求得tan(arctanx1+arctanx2)的值,可得arctanx1+arctanx2 的值.
解答 解:由x1、x2是方程x2+3$\sqrt{3}$x+4=0的两根,可得x1+x2 =-3$\sqrt{3}$,x1•x2=4,
故x1、x2均小于零,故arctanx1+arctanx2∈(-π,0),
且tan(arctanx1+arctanx2)=$\frac{{tan(arctanx}_{1}{)+tan(arctanx}_{2})}{1-tan(arcta{nx}_{1})•tan(arcta{nx}_{2})}$=$\frac{{x}_{1}{+x}_{2}}{1{-x}_{1}{•x}_{2}}$=$\sqrt{3}$,
∴arctanx1+arctanx2=-$\frac{2π}{3}$.
点评 本题主要考查韦达定理,两角和的正切公式,属于中档题.
练习册系列答案
相关题目
8.
当m=4,n=3时,运行如图所示的程序框图,将输出的a、i代入二项式(x2-$\frac{i}{x}$)a中,则此二项式的展开式中含x3项的系数为( )
| A. | 37${C}_{12}^{7}$ | B. | 38${C}_{12}^{8}$ | C. | -33${C}_{12}^{3}$ | D. | -37${C}_{12}^{5}$ |
18.过双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a,b>0)$的右焦点F作渐近线的垂线,垂足为P,过P作y轴的垂线交另一渐近线为Q,若△OFP的面积是△OPQ的面积的4倍,则双曲线的离心率为( )
| A. | $\frac{\sqrt{5}}{2}$ | B. | $\sqrt{2}$ | C. | 2$\sqrt{2}$ | D. | $\sqrt{5}$ |