题目内容
| AC |
| CB |
| OC |
| OA |
| OB |
分析:由题意可得
=
+
=
+
(
-
)=
+
,结合条件可得m=
,n=
,从而求得结果.
| OC |
| OA |
| AC |
| OA |
| 2 |
| 3 |
| OB |
| OA |
| 1 |
| 3 |
| OA |
| 2 |
| 3 |
| OB |
| 1 |
| 3 |
| 2 |
| 3 |
解答:解:∵
=2
,∴
=
+
=
+
•
=
+
(
-
)
=
+
.
再由
= m
+ n
(m,n∈R) 可得 m=
,n=
,故mn=
,
故答案为:
.
| AC |
| CB |
| OC |
| OA |
| AC |
| OA |
| 2 |
| 3 |
| AB |
| OA |
| 2 |
| 3 |
| OB |
| OA |
=
| 1 |
| 3 |
| OA |
| 2 |
| 3 |
| OB |
再由
| OC |
| •OA |
| •OB |
| 1 |
| 3 |
| 2 |
| 3 |
| 2 |
| 9 |
故答案为:
| 2 |
| 9 |
点评:本题考查两个向量的加减法的法则,以及其几何意义,用待定系数法求出m=
,n=
,是解题的关键.
| 1 |
| 3 |
| 2 |
| 3 |
练习册系列答案
相关题目
| OA |
| a |
| OB |
| b |
| OC |
| c |
| AG |
A、
| ||||||||||
B、-
| ||||||||||
C、
| ||||||||||
D、-
|