题目内容

精英家教网如图,已知C为△OAB边AB上一点,且
AC
=2
CB
OC
=m
OA
+n
OB
(m,n∈R)
,则mn=
 
分析:由题意可得 
OC
=
OA
+
AC
=
OA
+
2
3
(
OB
-
OA
 )
=
1
3
 
OA
+
2
3
 
OB
,结合条件可得m=
1
3
,n=
2
3
,从而求得结果.
解答:解:∵
AC
=2
CB
,∴
OC
=
OA
+
AC
=
OA
 +
2
3
AB
=
OA
+
2
3
(
OB
-
OA
 )

=
1
3
 
OA
+
2
3
 
OB

再由
OC
= m
•OA
+ n
•OB
(m,n∈R)
 可得 m=
1
3
,n=
2
3
,故mn=
2
9

故答案为:
2
9
点评:本题考查两个向量的加减法的法则,以及其几何意义,用待定系数法求出m=
1
3
,n=
2
3
,是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网