题目内容
命题:方程有两个不等的实根,命题:方程无实根.若“或”为真命题,“且”为假命题,求的取值范围.
在如图所示的几何体中,四边形ABCD为矩形,AB=2BC=4,BF=CF=AE=DE,EF=2,EF//AB,AF⊥CF.
(1)若G为FC的中点,证明:AF//平面BDG;
(2)求平面ABF与平面BCF夹角的余弦值.
设分别是椭圆的左右焦点,是上一点且与轴垂直,直线与的另一个交点为.
(Ⅰ)若直线的斜率为,求的离心率;
(Ⅱ) 若直线在轴上的截距为2,且,求
(本小题满分12分)
平面直角坐标系中,过椭圆:右焦点的直线交于两点,为的中点,且的斜率为.
(Ⅰ)求的方程;
(Ⅱ)若,为上的两点,若四边形的对角线,求四边形面积的最大值.
给定下列四个命题:其中为真命题的是 .(填上正确命题的序号)
①“”是“”的充分不必要条件;
②若“”为真,则“”为真;
③已知,则“”是“”的充分不必要条件;
④“若,则”的逆否命题为真命题.
已知分别是椭圆的左顶点和上顶点,点是线段上的任意一点,点分别是椭圆的左,右焦点,且的最大值是,最小值是,则椭圆的标准方程 .
已知是椭圆长轴的两个端点, 是椭圆上关于轴对称的两点,直线的斜率分别为,若椭圆的离心率为,则的最小值为( )
A. B. C. D.
设函数,则的值为( )
为了预防甲型H1N1流感,某学校对教室用药薰消毒法进行消毒,已知药物释放过程中,室内每立方米空气中的含药量y(毫克)与t时间(小时)成正比,药物释放完毕后,y与t之间的函数关系式为(a为常数)如下图所示,根据图中提供的信息,回答下列问题.
(1)从药物释放开始,求每立方米空气中的含药量y(毫克)与时间t(小时)之间的函数关系式;
(2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那么从药物释放开始至少需要经过多少小时后,学生才可能回到教室.