题目内容
要得到函数f(x)=sin(2x+
)的导函数f′(x)的图象,只需将f(x)的图象( )
| π |
| 3 |
分析:由题意可得f'(x)=2cos(2x+
)=2sin(2x+
+
)=2sin[2(x+
)+
],而由y=sin(2x+
)
y=2sin[2(x+
)+
]=f′(x),分析选项可判断
| π |
| 3 |
| π |
| 3 |
| π |
| 2 |
| π |
| 4 |
| π |
| 3 |
| π |
| 3 |
向左平移
| ||
| π |
| 4 |
| π |
| 3 |
解答:解:∵f(x)=sin(2x+
)的导函数f'(x)=2cos(2x+
)=2sin(2x+
+
)=2sin[2(x+
)+
]
而由y=sin(2x+
)
y=2sin[2(x+
)+
]=f′(x)
故选D
| π |
| 3 |
| π |
| 3 |
| π |
| 3 |
| π |
| 2 |
| π |
| 4 |
| π |
| 3 |
而由y=sin(2x+
| π |
| 3 |
向左平移
| ||
| π |
| 4 |
| π |
| 3 |
故选D
点评:本题主要考查三角函数的平移.复合函数的求导的应用,三角函数的平移原则为左加右减上加下减.
练习册系列答案
相关题目