题目内容
公差不为零的等差数列{an}中,已知其前n项和为Sn,若S8=S5+45,且a4,a7,a12成等比数列
(Ⅰ)求数列{an}的通项an
(Ⅱ)当bn=
时,求数列{bn}的前n和Tn.
(Ⅰ)求数列{an}的通项an
(Ⅱ)当bn=
| 1 | Sn |
分析:(Ⅰ)由等差数列的性质和S8=S5+45得a7=15,再由通项公式代入另一个条件列出方程组,求出首项和公差,代入通项公式化简即可;
(Ⅱ)由(Ⅰ)和等差数列的前n项和公式求出Sn,再代入bn=
化简后再裂项,代入数列{bn}的前n和Tn化简.
(Ⅱ)由(Ⅰ)和等差数列的前n项和公式求出Sn,再代入bn=
| 1 |
| Sn |
解答:解:(Ⅰ)由S8=S5+45得,S8-S5=45,
∴a6+a7+a8=45,即3a7=45,得a7=15,
又∵a72=a4•a12,设公差为d≠0,
∴
解得
,
∴an=2n+1,
(Ⅱ)由(Ⅰ)得Sn=
=n(n+2)
∴bn=
=
(
-
),
∴Tn=
-
.
∴a6+a7+a8=45,即3a7=45,得a7=15,
又∵a72=a4•a12,设公差为d≠0,
∴
|
解得
|
∴an=2n+1,
(Ⅱ)由(Ⅰ)得Sn=
| n(3+2n+1) |
| 2 |
∴bn=
| 1 |
| n(n+2) |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+2 |
|
∴Tn=
| 3 |
| 4 |
| 2n+3 |
| 2(n+1)(n+2) |
点评:本题考查了等差和等比数列的性质,通项公式和前n项和公式的应用,以及裂项相消法求数列的前n项和.
练习册系列答案
相关题目