题目内容
已知半圆x2+y2=4(y≥0),动圆与此半圆相切且与x轴相切,
(Ⅰ)求动圆圆心的轨迹,并画出其轨迹图形;
(Ⅱ)是否存在斜率为
的直线l,它与(Ⅰ)中所得轨迹的曲线由左到右顺次交于A,B,C,D四点,且满足|AD|=2|BC|,若存在,求出l的方程;若不存在,说明理由。
(Ⅰ)求动圆圆心的轨迹,并画出其轨迹图形;
(Ⅱ)是否存在斜率为
解:(Ⅰ)设动圆圆心为M(x,y),作MN⊥x轴交x轴于N,
若两圆外切,|MO|=|MN|+2,
所以,
,
化简,得
;
若两圆内切,|MO|=2-|MN|,
所以,
;
化简得x2=-4(y-1)(y>0);
综上,动圆圆心的轨迹方程为x2=4(y+1)(y>0)及x2=4(y+l) (y>0),
其图象是两条抛物线位于x轴上方的部分,作简图,如下图所示:
。
(Ⅱ)设直线l存在,其方程可设为
,
依题意,它与曲线x2=4(y+1)(y>0)交于A,D,与曲线x2=-4(y -1)(y>0)交于 B,C,
由
于
,得3x2-4x-12b-12=0及3x2+4x+12b-12=0,
,
,
∴
,
即
,
解得:
,
把
代入方程
,得
,
因为曲线x2=4(y+l)中横坐标范围为(-∞,-2)∪(2,+∞),所以这样的直线不存在。
若两圆外切,|MO|=|MN|+2,
所以,
化简,得
若两圆内切,|MO|=2-|MN|,
所以,
化简得x2=-4(y-1)(y>0);
综上,动圆圆心的轨迹方程为x2=4(y+1)(y>0)及x2=4(y+l) (y>0),
其图象是两条抛物线位于x轴上方的部分,作简图,如下图所示:
(Ⅱ)设直线l存在,其方程可设为
依题意,它与曲线x2=4(y+1)(y>0)交于A,D,与曲线x2=-4(y -1)(y>0)交于 B,C,
由
∴
即
解得:
把
因为曲线x2=4(y+l)中横坐标范围为(-∞,-2)∪(2,+∞),所以这样的直线不存在。
练习册系列答案
相关题目
已知半圆x2+y2=4(y<0)上任一点P(t,h),过点P做切线,切线的斜率为k,则函数k=f(t)的单调性为( )
| A、增函数 | B、减函数 | C、先增后减 | D、先减后增 |