题目内容
已知an=
,则s10= .
| 1 | n(n+2) |
分析:利用裂项法可知an=
=
(
-
),从而可求S10.
| 1 |
| n(n+2) |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+2 |
解答:解:∵an=
=
(
-
),
∴S10=
[(1-
)+(
-
)+(
-
)+…+(
-
)+(
-
)]
=
(1+
-
-
)
=
(
-
)
=
.
故答案为:
.
| 1 |
| n(n+2) |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+2 |
∴S10=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 9 |
| 1 |
| 11 |
| 1 |
| 10 |
| 1 |
| 12 |
=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 11 |
| 1 |
| 12 |
=
| 1 |
| 2 |
| 3 |
| 2 |
| 23 |
| 132 |
=
| 175 |
| 264 |
故答案为:
| 175 |
| 264 |
点评:本题考查数列的求和,着重考查裂项法的应用,属于中档题.
练习册系列答案
相关题目