题目内容

1.已知函数y=f(x)是定义在R上的奇函数,且当x∈(-∞,0)时,不等式f(x)+xf′(x)<0恒成立,若a=30.3f(30.3),b=(logπ3)f(logπ3),c=(${log}_{3}\frac{1}{3}$)f(${log}_{3}\frac{1}{3}$),则a,b,c的大小关系(用“>”连接)是a>c>b.

分析 利用导数研究函数的单调性,利用单调性判断a、b、c的大小.

解答 解:函数y=f(x)是定义在R上的奇函数,且当x∈(-∞,0)时,不等式f(x)+xf′(x)<0恒成立,
即xf(x)的导数小于零恒成立,故函数y=xf(x)在(-∞,0)上单调递减,
故 y=xf(x)是偶函数,且它在(0,+∞)上单调递增.
∵30.3>1>logπ3>0>${log}_{3}\frac{1}{3}$=-1,
∵a=30.3f(30.3),b=(logπ3)f(logπ3),c=(${log}_{3}\frac{1}{3}$)f(${log}_{3}\frac{1}{3}$)=-f(-1)=1•f(1),
∴a>c>b,
故答案为:a>c>b.

点评 本题主要考查利用导数研究函数的单调性,利用单调性比较几个数的大小,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网