题目内容
数列1,2,1,2,2,1,2,2,2,1,2,2,2,2,1,2,……,其相邻的两个1被2隔开,第n对1之间有n个2,则数列的前1234项的和为
- A.2450
- B.2419
- C.4919
- D.1234
B
设该数列前1234项中共有k个1,则可得k=49.∴所求的和为49+2(1234-49)=2419,或构造补数列1,0,1,0,0,1,0,0,0,1,0,0,0,0,1,0……,显然其与原数列相应项之和均为2,故所求和为1234x2-49=2419
设该数列前1234项中共有k个1,则可得k=49.∴所求的和为49+2(1234-49)=2419,或构造补数列1,0,1,0,0,1,0,0,0,1,0,0,0,0,1,0……,显然其与原数列相应项之和均为2,故所求和为1234x2-49=2419
练习册系列答案
相关题目