题目内容
【题目】如图,四棱台
中,底面
是菱形,
底面
,且
,
,
是棱
的中点.
![]()
(1)求证:
;
(2)求二面角
的余弦值.
【答案】(1)详见解析;(2)
.
【解析】
(1)推导出
⊥BD.BD⊥AC.从而BD⊥平面AC
,由此能证明
.
(2)如图,设AC交BD于点O,以O为原点,OA、OB、OA1所在直线分别为x轴、y轴、z轴建立空间直角坐标系.利用向量法能求出二面角E﹣
﹣C的余弦值.
证明:(1)因为
⊥底面ABCD,所以
⊥BD.
因为底面ABCD是菱形,所以BD⊥AC.
又AC∩CC1=C,所以BD⊥平面A
.
又由四棱台ABCD﹣
知,
,A,C,
四点共面.
所以BD⊥
.
(2)如图,设AC交BD于点O,依题意,
∥OC且
=OC,
所以
O∥C
,且
O=C
.所以
O⊥底面ABCD.
以O为原点,OA、OB、OA1所在直线分别为x轴、y轴、z轴建立空间直角坐标系.
则
,
由
,得B1(
).
因为E是棱BB1的中点,所以E(
),所以
(
),
(﹣2
,0,0).
设
(x,y,z)为平面
的法向量,
则
,取z=3,得
(0,4,3),
平面
的法向量
(0,1,0),
又由图可知,二面角E﹣A1C1﹣C为锐二面角,
设二面角E﹣A1C1﹣C的平面角为θ,
则cosθ
,
所以二面角E﹣A1C1﹣C的余弦值为
.
![]()
练习册系列答案
相关题目