题目内容
设x,y∈R,向量
=(x,1),
=(1,y),
=(2,-4},且
⊥
,
⊥
,则
+
=( )
| a |
| b |
| c |
| a |
| c |
| b |
| c |
| a |
| b |
分析:由
=(x,1),
=(1,y),
=(2,-4},且
⊥
,
⊥
,知
•
=2x-4=0,
•
=2-4y=0,由此能求出
+
.
| a |
| b |
| c |
| a |
| c |
| b |
| c |
| a |
| c |
| b |
| c |
| a |
| b |
解答:解:∵
=(x,1),
=(1,y),
=(2,-4},且
⊥
,
⊥
,
∴
•
=2x-4=0,解得x=2,
•
=2-4y=0,解得y=
,
∴
+
=(x+1,1+y)=(3,
).
故选D.
| a |
| b |
| c |
| a |
| c |
| b |
| c |
∴
| a |
| c |
| b |
| c |
| 1 |
| 2 |
∴
| a |
| b |
| 3 |
| 2 |
故选D.
点评:本题考查利用数量积判断两个平面向量的垂直关系的应用,是基础题.解题时要认真审题,仔细解答.
练习册系列答案
相关题目
设x,y∈R,向量
=(x,1),
=(1,y),
=(2,-4),且
⊥
,
∥
,则
+
=( )
| a |
| b |
| c |
| a |
| c |
| b |
| c |
| a |
| b |
| A、(3,3) | ||
| B、(3,-1) | ||
| C、(-1,3) | ||
D、(3,
|