题目内容

已知等差数列lgx1,lgx2,…,lgxn的第r项为s,第s项为r(0<r<s),则x1+x2+…+xn=
10r+s
9
(1-
1
10n
)
10r+s
9
(1-
1
10n
)
分析:设此等差数列的公差为d,利用等差数列lgx1,lgx2,…,lgxn的第r项为s,第s项为r(0<r<s),可得s=lgxr=lgx1+(r-1)d,r=lgxs=lgx1+(s-1)d.两式相减得s-r=(r-s)d,解得d=-1.可得lgx1=s+r-1,得到x1=10s+r-1.于是lgxn=lgx1+(n-1)×(-1),化为xn=101-nx1.代入所求的式子,利用等比数列的前n项和公式即可得出.
解答:解:设此等差数列的公差为d,
∵等差数列lgx1,lgx2,…,lgxn的第r项为s,第s项为r(0<r<s),
∴s=lgxr=lgx1+(r-1)d,r=lgxs=lgx1+(s-1)d.
两式相减得s-r=(r-s)d,解得d=-1.
∴lgx1=s+r-1,得到x1=10s+r-1
∴lgxn=lgx1+(n-1)×(-1),化为xn=101-nx1
∴x1+x2+…+xn=x1(1+
1
10
+
1
102
+…+
1
10n-1
)
=
1-
1
10n
1-
1
10
×10s+r-1
=
10r+s
9
(1-
1
10n
)

故答案为:
10r+s
9
(1-
1
10n
)
点评:本题考查了等差数列的通项公式及其性质、等比数列的前n项和公式、对数的运算性质等基础知识与基本技能方法,属于难题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网