题目内容

已知点P,A,B,C,D是球O表面上的点,PA⊥平面ABCD,四边形ABCD是边长为2
3
的正方形,若PA=2
6
,求△OAB的面积.
考点:球内接多面体
专题:计算题,空间位置关系与距离
分析:可将P,A,B,C,D补全为长方体ANCD-A′B′C′D′,让P与A′重合,则该长方体的对角线PC即为球O的直径(球O为该长方体的外接球,于是可求得PC的长度,可判断△OAB为等边三角形,从而而求其面积.
解答: 解:依题意,可将P,A,B,C,D补全为长方体ABCD-A′B′C′D′,让P与A′重合,则球O为该长方体的外接球,长方体的对角线PC即为球O的直径.
∵ABCD是边长为2
3
正方形,PA⊥平面ABCD,PA=2
6

∴PC2=AP2+AC2=24+24=48,
∴2R=4
3
,R=OP=2
3

∴△OAB为边长是2
3
的等边三角形,
∴S△OAB=
1
2
×2
3
×2
3
×sin60°=3
3
点评:本题考查直线与平面垂直的性质,考查球内接多面体的应用,“补形”是关键,考查分析、转化与运算能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网