题目内容
11.若a?α,b?β,则a与b的位置关系是平行、相交、异面.分析 利用两个平面中的直线的位置关系可以是平行、相交、异面,即可得出结论.
解答 解:由题意,两个平面中的直线的位置关系可以是平行、相交、异面.
故答案为:平行、相交、异面.
点评 本题考查两个平面中的直线的位置关系,比较基础.
练习册系列答案
相关题目
3.已知x3-x7=a0+a1(x-1)+a2(x-1)2+a3(x-1)3+…+a8(x-1)7,则a3=( )
| A. | 35 | B. | 36 | C. | -34 | D. | -33 |
2.已知双曲线M:9x2-16y2=144,若椭圆N以M的焦点为顶点,以M的顶点为焦点,则椭圆N的准线方程是( )
| A. | x=±$\frac{16}{5}$ | B. | x=±$\frac{25}{4}$ | C. | x=±$\frac{16}{3}$ | D. | x=±$\frac{25}{3}$ |