题目内容

已知0<k<4直线L:kx-2y-2k+8=0和直线M:2x+k2y-4k2-4=0与两坐标轴围成一个四边形,则这个四边形面积最小值时k值为(  )
A、2
B、
1
2
C、
1
4
D、
1
8
考点:直线的一般式方程
专题:函数的性质及应用,直线与圆
分析:求出两直线经过的定点坐标,再求出直线与x 轴的交点,与y 轴的交点,得到所求的四边形,求出四边形的面积表达式,应用二次函数的知识求面积最小时的k值.
解答: 解:如图所示:
直线L:kx-2y-2k+8=0 即k(x-2)-2y+8=0,过定点B(2,4),
与y 轴的交点C(0,4-k),
直线M:2x+k2y-4k2-4=0,即  2x+k2 (y-4)-4=0,
过定点(2,4 ),与x 轴的交点A(2 k2+2,0),
由题意,四边形的面积等于三角形ABD的面积和梯形 OCBD的面积之和,
∴所求四边形的面积为
1
2
×4×(2 k2+2-2)+
1
2
×(4-k+4)×2=4k2-k+8,
∴当k=
1
8
时,所求四边形的面积最小,
故选:
1
8
点评:本题考查了直线过定点问题,以及二次函数的最值问题,是基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网