题目内容
已知二项式(1-2logx)n的展开式的所有奇数项的二项式系数之和为64.
(1)求n的值;
(2)求展开式的所有项的系数之和;
(3)求展开式的所有偶数项的系数之和。
【答案】
解:(1)![]()
即2n=128,则n=7
(2)设![]()
令x=2,得:a0+a1+a2+…+a7=(log22)7=-1 ①
(3)令x=
,得:a0-a1+a2-a3+…-a7=(log2
)7=37 ②
①-②,得
a1+a3+a5+a7=()÷2=-1094
即展开式的所有偶数项的系数之和为-1094.
练习册系列答案
相关题目