题目内容

4.已知抛物线y2=2px的焦点F(1,0),过F作直线l交抛物线于A(x1,y1),B(x2,y2)两点,如图所示,A在x轴上方.
(1)若|AB|=8时,求直线l的倾斜角;
(2)设P(-1,0),求证:∠APQ=∠CPQ;
(3)设Q(2,0),AQ的延长线交抛物线于C,设BC的中点为D,当直线DF在y轴上的截距为m,且m∈(0,+∞),求y1取值范围.

分析 (1)设l:y=k(x-1),与y2=4x,消去x得${y}^{2}-\frac{4}{k}y-4=0$,由韦达定理和椭圆弦长公式能求出直线l的方程.
(2)由yAyB=-4,和得kPA+kPB=0,证明直线PA,PB的斜率之和为0,由此能证明:∠APQ=∠CPQ.
(3)由(1)得C($\frac{16}{{{y}_{A}}^{2}},\frac{-8}{{y}_{A}}$),B($\frac{4}{{{y}_{A}}^{2}},\frac{-4}{{y}_{A}}$),从而D($\frac{10}{{{y}_{A}}^{2}},\frac{-6}{{y}_{A}}$),DF:y=$\frac{6{y}_{A}}{{{y}_{A}}^{2}-10}$(x-1),由此能求出y1取值范围.

解答 (1)解:抛物线y2=2px的焦点F(1,0),抛物线的方程为y2=4x
由直线与抛物线有两个不同交点知直线l的斜率不为零,
当直线l的斜率存在且不为零时,设l:y=k(x-1),
与y2=4x,消去x得${y}^{2}-\frac{4}{k}y-4=0$,
∴yAyB=-4,yA+yB=$\frac{4}{k}$,
当l斜率不存在时,yAyB=-4,∴yAyB=-4,
|AB|=$\sqrt{1+\frac{1}{{k}^{2}}}$|y1-y2|=8,
解得k=±1,
∴直线l的方程为:y=x-1或y=-x+1,直线l的倾斜角为45°或135°.
(2)证明:∵yAyB=-4,
∴kPA+kPB=$\frac{{y}_{A}}{{x}_{A}+1}+\frac{{y}_{B}}{{x}_{B}+1}$=$\frac{({y}_{A}+{y}_{B})(1+\frac{{y}_{A}{y}_{B}}{4})}{({x}_{A}+1)({x}_{B}+1)}$=0,
∴直线PA,PB的斜率之和为0,
∴∠APQ=∠CPQ;
(3)解:由(1)得C($\frac{16}{{{y}_{A}}^{2}},\frac{-8}{{y}_{A}}$),B($\frac{4}{{{y}_{A}}^{2}},\frac{-4}{{y}_{A}}$),
∴D($\frac{10}{{{y}_{A}}^{2}},\frac{-6}{{y}_{A}}$),∴DF:y=$\frac{6{y}_{A}}{{{y}_{A}}^{2}-10}$(x-1),
令x=0,得-$\frac{6{y}_{A}}{{{y}_{A}}^{2}-10}$∈(0,+∞),∴yA∈(-∞,-4)∪(0,4),
∴yA取值范围是(-∞,-4)∪(0,4),即y1取值范围是(-∞,-4)∪(0,4).

点评 本题考查直线方程的求法,考查角相等的证明,考查点的纵坐标的取值范围的求法,难度大.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网