题目内容

已知sin(
π
4
+3α) sin(
π
4
-3α)=
1
4
,α∈(0,
π
4
),求(
1-cos2α
sin2α
-
3
)sin4α的值.
分析:利用
π
4
+3α,
π
4
-3α
互余,化简已知的方程,通过二倍角公式结合α的范围,求出α的值,然后代入表达式,利用特殊角的三角函数值求解即可.
解答:解:sin(
π
4
+3α)sin(
π
4
-3α)=sin(
π
4
+3α)cos(
π
4
+3α)
=
1
2
sin(6α+
π
2
)=
1
2
cos6α=
1
4

cos6α=
1
2
,又6α∈(0,
2
),∴6α=
π
3
,即α=
π
18
=10°.
∴(
1-cos2α
sin2α
-
3
)sin4α=
sinα-
3
cosα
cosα
•sin4α=
sin10o-
3
cos10o
cos10o
•sin40o
=
-2(sin60ocos10o-cos60osin10o)
cos10o
•sin40o=
-2sin50o
cos10o
•sin40o=
-sin80o
cos10o
=-1

所求值为:-1.
点评:本题主要考查三角函数的恒等变形.包含了和差角、倍角的运算,已知三角函数值求角,诱导公式,辅助角公式,要求学生对三角函数的变形方向有综合的理解.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网