题目内容

1.$\int_{-1}^1{({|x|+sinx})}$dx=1.

分析 由定积分的运算,$\int_{-1}^1{({|x|+sinx})}$dx=${∫}_{-1}^{1}$丨x丨dx+${∫}_{-1}^{1}$sinxdx,根据定积分的性质可知:由y=丨x丨为偶函数,则${∫}_{-1}^{1}$丨x丨dx=2${∫}_{0}^{1}$xdx=2($\frac{1}{2}$x2)${丨}_{0}^{1}$=1,y=sinx为奇函数,${∫}_{-1}^{1}$sinxdx=0,即可求得$\int_{-1}^1{({|x|+sinx})}$dx的值.

解答 解:$\int_{-1}^1{({|x|+sinx})}$dx=${∫}_{-1}^{1}$丨x丨dx+${∫}_{-1}^{1}$sinxdx,
由y=丨x丨为偶函数,则${∫}_{-1}^{1}$丨x丨dx=2${∫}_{0}^{1}$xdx=2($\frac{1}{2}$x2)${丨}_{0}^{1}$=1,
y=sinx为奇函数,${∫}_{-1}^{1}$sinxdx=0,
∴$\int_{-1}^1{({|x|+sinx})}$dx=${∫}_{-1}^{1}$丨x丨dx+${∫}_{-1}^{1}$sinxdx=1+0=1,
故答案为:1.

点评 本题考查定积分的性质,考查定积分的运算,考查计算能力,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网