题目内容

在数列{an}中,a1=1,a2=2,若{an+an+1}是公差为d(d>1)的等差数列.

(1)求使(an+a n+1)(an+2+an+3)+(an+2-an)>(an+1+an+2)2-1(n∈N*)成立的d的取值范围;

(2)若bn=a2n-1+a2n(n∈N*),求bn的表达式.

解:(1)∵a1+a2=3,

∴an+an+1=(a1+a2)+(n-1)d=3+(n-1)d.

∴an+1+an+2=3+nd,an+2+an+3=3+(n+1)d.

又an+2-an=(an+1+an+2)-(an+1+an)=d,

(an+an+1)(an+2+an+3)+(an+2-an)>(an+1+an+2)2-1,

∴[3+(n-1)d][3+(n+1)d]+d>(3+nd)2-1.

∴d2-d-1<1.

解得0<d<.

(2)b1=a1+a2=3.

又bn=a2n-1+a2n,bn+1=a2n+1+a2n+2,

∴bn+1-bn=(a2n+1+a2n+2)-(a2n-1+a2n)

=(a2n+1-a2n-1)+(a2n+2-a2n).

∵a2n+1-a2n-1=(a2n+a2n+1)-(a2n-1+a2n)=d,a2n+2-a2n=d,

∴bn+1-bn=2d.

∴{bn}是以首项b1=3,公差为2d的等差数列.

∴bn=3+2(n-1)d=2dn+3-2d(n∈N*).


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网