题目内容
(2008•宁波模拟)在等比数列{an}中,若a1+a2+a3=
,a2=
,则
+
+
=
.
| 7 |
| 4 |
| 1 |
| 2 |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a3 |
| 13 |
| 4 |
| 13 |
| 4 |
分析:利用等比数列的性质得到a1a2a3=a23=
,a1a3=a22=
,将
+
+
通过通分变形为
,将得到的值代入即得到所求.
| 1 |
| 8 |
| 1 |
| 4 |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a3 |
| a2a3+a1a3+a1a2 |
| a1a2a3 |
解答:解:在等比数列{an}中,因为a1+a2+a3=
,a2=
,
所以a1a2a3=a23=
,a1a3=a22=
所以
+
+
=
=
=2+(
-a2)
=
故答案为:
.
| 7 |
| 4 |
| 1 |
| 2 |
所以a1a2a3=a23=
| 1 |
| 8 |
| 1 |
| 4 |
所以
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a3 |
=
| a2a3+a1a3+a1a2 |
| a1a2a3 |
=
| ||
|
=2+(
| 7 |
| 4 |
=
| 13 |
| 4 |
故答案为:
| 13 |
| 4 |
点评:本题考查等比数列的性质:若m+n=p+q,则有am•an=ap•aq,该性质在解决一些代数式的求值问题时常有,要牢记.
练习册系列答案
相关题目