题目内容
设数列{an},a1=| 5 |
| 6 |
(1)求证:{an-
| 1 |
| 2 |
(2)求an;
(3)求{an}的前n项和Sn.
分析:(1)根据韦达定理分别求得α+β和αβ代入3α-αβ+3β=1,进而求得an=
an-1+
,进而可推知
为定值,原式得证.(2)先根据a1求得数列{an-
}的首项,再由(1)求得的公比,根据等比数列的通项公式进而可得an
(3)再根据等比数列的求和公式,求得Sn.
| 1 |
| 3 |
| 1 |
| 3 |
an-
| ||
an-1-
|
| 1 |
| 2 |
(3)再根据等比数列的求和公式,求得Sn.
解答:(1)证明:∵α+β=
,αβ=
代入3α-αβ+3β=1得an=
an-1+
,
∴
=
=
为定值.
∴数列{an-
}是等比数列.
(2)解:∵a1-
=
-
=
,
∴an-
=
×(
)n-1=(
)n.
∴an=(
)n+
.
(3)解:Sn=(
+
++
)+
=
+
=
-
.
| an |
| an-1 |
| 1 |
| an-1 |
| 1 |
| 3 |
| 1 |
| 3 |
∴
an-
| ||
an-1-
|
| ||||||
an-1-
|
| 1 |
| 3 |
∴数列{an-
| 1 |
| 2 |
(2)解:∵a1-
| 1 |
| 2 |
| 5 |
| 6 |
| 1 |
| 2 |
| 1 |
| 3 |
∴an-
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
∴an=(
| 1 |
| 3 |
| 1 |
| 2 |
(3)解:Sn=(
| 1 |
| 3 |
| 1 |
| 32 |
| 1 |
| 3n |
| n |
| 2 |
| ||||
1-
|
| n |
| 2 |
| n+1 |
| 2 |
| 1 |
| 2×3n |
点评:本题主要考查了等比数列的性质,属基础题.
练习册系列答案
相关题目