题目内容
【题目】已知函数
,其中
.
(1)若
是定义在
上的单调函数,求实数a的取值范围;
(2)当
时,判断
与
的图象在其公共点处是否存在公切线?若存在,求满足条件的a值的个数;若不存在,请说明理由.
【答案】(1)
或
;(2)存在,理由见解析.
【解析】
(1)对函数求导,根据实数a的不同取值进行分类讨论,最后可以根据函数的单调区间求出实数a的取值范围;
(2))假设
,
的图象在其公共点
处存在公切线,对两个函数分别求导,根据点在函数图象上,和切线的斜率列出方程组,化简得到关于a的方程,构造新函数,根据新函数的零点情况进而可以判断出方程的根的情况,最后可以判断出是否存在公切线.
(1)
.
当
时,
,故
在
上单调递减,满足题意;
当
时,要使得
在
上单调,则恒有
.
∴
,解得:
.
综上,
或
(2)假设
,
的图象在其公共点
处存在公切线,
则![]()
由①可得:![]()
∴
.
将
代入②,则
,即:
.
令
,则
,故
在
上单调递减,在
上单调递增.
又
,且当
,
;当
,![]()
∴
在
有两个零点,即方程
在
有两个不同的解.
所以,
与
的图象在其公共点处存在公切线,满足条件的a值有2个
练习册系列答案
相关题目
【题目】国家大力提倡科技创新,某工厂为提升甲产品的市场竞争力,对生产技术进行创新改造,使甲产品的生产节能降耗.以下表格提供了节能降耗后甲产品的生产产量
(吨)与相应的生产能耗
(吨)的几组对照数据.
|
|
|
|
|
|
|
|
|
|
(1)请根据上表提供的数据,用最小二乘法求出
关于
的线性回归方程
;
(
,
)
(2)已知该厂技术改造前生产
吨甲产品的生产能耗为
吨,试根据(1)求出的线性回归方程,预测节能降耗后生产
吨甲产品的生产能耗比技术改造前降低多少吨?