题目内容

3.双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的渐近线为正方形OABC的边OA,OC所在的直线,点B为该双曲线的焦点.若正方形OABC的边长为2,则a=2.

分析 根据双曲线渐近线在正方形的两个边,得到双曲线的渐近线互相垂直,即双曲线是等轴双曲线,结合等轴双曲线的性质进行求解即可.

解答 解:∵双曲线的渐近线为正方形OABC的边OA,OC所在的直线,
∴渐近线互相垂直,则双曲线为等轴双曲线,即渐近线方程为y=±x,
即a=b,
∵正方形OABC的边长为2,
∴OB=2$\sqrt{2}$,即c=2$\sqrt{2}$,
则a2+b2=c2=8,
即2a2=8,
则a2=4,a=2,
故答案为:2

点评 本题主要考查双曲线的性质的应用,根据双曲线渐近线垂直关系得到双曲线是等轴双曲线是解决本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网