题目内容
已知函数y=tanωx(ω>0)的图象与直线y=a相交于A,B两点,若AB长度的最小值为π,则ω的值为
- A.4
- B.2
- C.1
- D.

C
分析:由于若函数y=tanωx(ω>0)的图象与直线y=a相交于A,B两点,则两点间的距离必是最小正周期的正整数倍,所以两点间长度的最小值即为函数最小正周期.
解答:由于函数y=tanωx(ω>0)的图象与直线y=a相交于A,B两点,
根据函数y=tanωx(ω>0)的图象特点可知则两点间的距离必是最小正周期的正整数倍,
又由两点间长度的最小值为π,即函数最小正周期为π,所以
.
又由ω>0,则ω=1.
故选C.
点评:本题考查正切函数的周期性,函数y=tanωx的最小正周期是
.
分析:由于若函数y=tanωx(ω>0)的图象与直线y=a相交于A,B两点,则两点间的距离必是最小正周期的正整数倍,所以两点间长度的最小值即为函数最小正周期.
解答:由于函数y=tanωx(ω>0)的图象与直线y=a相交于A,B两点,
根据函数y=tanωx(ω>0)的图象特点可知则两点间的距离必是最小正周期的正整数倍,
又由两点间长度的最小值为π,即函数最小正周期为π,所以
又由ω>0,则ω=1.
故选C.
点评:本题考查正切函数的周期性,函数y=tanωx的最小正周期是
练习册系列答案
相关题目
已知函数y=tanωx在(-
,
)上是减函数,则( )
| π |
| 2 |
| π |
| 2 |
| A、0<ω≤1 | B、-1≤ω<0 |
| C、ω≥1 | D、ω≤-1 |
已知函数y=tan(2x+φ)的图象过点(
,0),则φ可以是( )
| π |
| 12 |
A、-
| ||
B、
| ||
C、-
| ||
D、
|