题目内容
8.已知m∈R,复数z=$\frac{m(m-2)}{m-1}$+(m2+2m-3)i,当m为何值时:(1)z∈R?(2)z是纯虚数?分析 (1)由z∈R,得$\left\{\begin{array}{l}{{m}^{2}+2m-3=0}\\{m-1≠0}\end{array}\right.$,求解即可得答案;
(2)由z是纯虚数,得$\left\{\begin{array}{l}{\frac{m(m-2)}{m-1}=0}\\{{m}^{2}+2m-3≠0}\end{array}\right.$,求解即可得答案.
解答 解:(1)由z∈R,得$\left\{\begin{array}{l}{{m}^{2}+2m-3=0}\\{m-1≠0}\end{array}\right.$,解得m=-3;
(2)∵z是纯虚数,
∴$\left\{\begin{array}{l}{\frac{m(m-2)}{m-1}=0}\\{{m}^{2}+2m-3≠0}\end{array}\right.$,解得m=0或m=2.
点评 本题考查复数的基本概念,属基础题.
练习册系列答案
相关题目
19.
执行如图所示的程序框图,输出的T的值是( )
| A. | 47 | B. | 48 | C. | 49 | D. | 50 |
16.下列点不在直线$\left\{\begin{array}{l}{x=-1-\frac{\sqrt{2}}{2}t}\\{y=2+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数)上的是( )
| A. | (-1,2) | B. | (2,-1) | C. | (3,-2) | D. | (-3,2) |
3.已知点M的直角坐标为(-3,-3,3),则它的柱坐标为( )
| A. | $(3\sqrt{2},\frac{π}{4},3)$ | B. | $(3\sqrt{2},\frac{3π}{4},1)$ | C. | $(3\sqrt{2},\frac{5π}{4},3)$ | D. | $(3\sqrt{2},\frac{7π}{4},1)$ |
13.已知向量$\vec a=({1,3}),\vec b=({2,5})$,则$\vec a$+$\vec b$=( )
| A. | (-1,-2) | B. | (3,8) | C. | (5,5) | D. | (-3,8) |
17.数列{an}满足a1=1,a2=2,2an+1=an+an+2,若bn=$\frac{1}{{a}_{n}{a}_{n+1}}$,则数列{bn}的前5项和等于( )
| A. | 1 | B. | $\frac{5}{6}$ | C. | $\frac{1}{6}$ | D. | $\frac{1}{30}$ |