题目内容

8.已知m∈R,复数z=$\frac{m(m-2)}{m-1}$+(m2+2m-3)i,当m为何值时:(1)z∈R?(2)z是纯虚数?

分析 (1)由z∈R,得$\left\{\begin{array}{l}{{m}^{2}+2m-3=0}\\{m-1≠0}\end{array}\right.$,求解即可得答案;
(2)由z是纯虚数,得$\left\{\begin{array}{l}{\frac{m(m-2)}{m-1}=0}\\{{m}^{2}+2m-3≠0}\end{array}\right.$,求解即可得答案.

解答 解:(1)由z∈R,得$\left\{\begin{array}{l}{{m}^{2}+2m-3=0}\\{m-1≠0}\end{array}\right.$,解得m=-3;
(2)∵z是纯虚数,
∴$\left\{\begin{array}{l}{\frac{m(m-2)}{m-1}=0}\\{{m}^{2}+2m-3≠0}\end{array}\right.$,解得m=0或m=2.

点评 本题考查复数的基本概念,属基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网