题目内容
已知{an}满足a1=a2=1,
-
=1,则a6-a5的值为( )
| an+2 |
| an+1 |
| an+1 |
| an |
| A、0 | B、18 | C、96 | D、600 |
分析:由a1=a2=1,
-
=1,分别令n=1,2,3,4,求出a3,a4,a5,a6,由此能够得到a6-a5的值.
| an+2 |
| an+1 |
| an+1 |
| an |
解答:解:∵a1=a2=1,
-
=1,
∴
-
=1,a3=2.
-
=1,a4=6,
-
=1,a5=24,
-
=1,a6=120,
∴a6-a5=120-24=96.
故选C.
| an+2 |
| an+1 |
| an+1 |
| an |
∴
| a3 |
| 1 |
| 1 |
| 1 |
| a4 |
| 2 |
| 2 |
| 1 |
| a5 |
| 6 |
| 6 |
| 2 |
| a6 |
| 24 |
| 24 |
| 6 |
∴a6-a5=120-24=96.
故选C.
点评:本题考查数列的递推公式,解题时要认真审题,注意总结规律,合理解答.
练习册系列答案
相关题目