题目内容
【题目】如图,在直三棱柱
中,
,
,
为
上的点,
平面
.
![]()
(1)求证:
平面
;
(2)若
,且
,求三棱锥
的体积.
【答案】(1)见解析;(2)![]()
【解析】
【试题分析】(1)运用线面垂直判定定理推证;(2)先求三棱锥的高与底面面积再运用三棱锥的体积公式求解:
(1)连结ED,
∵平面AB1C∩平面A1BD=ED,B1C∥平面A1BD,
∴B1C∥ED,
∵E为AB1中点,∴D为AC中点,
∵AB=BC, ∴BD⊥AC①
![]()
【法一】:由A1A⊥平面ABC,
平面ABC,得A1A⊥BD②,
由①②及A1A、AC是平面
内的两条相交直线,得BD⊥平面
.
【法二】:由A1A⊥平面ABC,A1A
平面![]()
∴平面
⊥平面ABC ,又平面
平面ABC=AC,得BD⊥平面
.
(2)由
得BC=BB1=1,
由(1)知
,又
得
,
∵
,∴
,
∴![]()
【题目】学习雷锋精神前半年内某单位餐厅的固定餐椅经常有损坏,学习雷锋精神时全修好;单位对学习雷锋精神前后各半年内餐椅的损坏情况作了一个大致统计,具体数据如表:
损坏餐椅数 | 未损坏餐椅数 | 总计 | |
学习雷锋精神前 | 50 | 150 | 200 |
学习雷锋精神后 | 30 | 170 | 200 |
总计 | 80 | 320 | 400 |
求:学习雷锋精神前后餐椅损坏的百分比分别是多少?并初步判断损毁餐椅数量与学习雷锋精神是否有关?
请说明是否有
以上的把握认为损毁餐椅数量与学习雷锋精神
有关?
参考公式:
,
|
|
|
|
|
|
|
|
|
|
|
|
【题目】已知某观光海域AB段的长度为3百公里,一超级快艇在AB段航行,经过多次试验得到其每小时航行费用Q(单位:万元)与速度v(单位:百公里/小时)(0≤v≤3)的以下数据:
| 0 | 1 | 2 | 3 |
| 0 | 0.7 | 1.6 | 3.3 |
为描述该超级快艇每小时航行费用Q与速度v的关系,现有以下三种函数模型供选择:Q=av3+bv2+cv,Q=0.5v+a,Q=klogav+b.
(1)试从中确定最符合实际的函数模型,并求出相应的函数解析式;
(2)该超级快艇应以多大速度航行才能使AB段的航行费用最少?并求出最少航行费用.