题目内容
已知0<a<
,0<β<
,且cos(a+
)=
,sin(β-
)=-
,则cos(a+β)的值为( )
| π |
| 2 |
| π |
| 2 |
| π |
| 3 |
| 5 |
| 13 |
| π |
| 3 |
| 3 |
| 5 |
分析:首先根据角的范围求出sin(α+
)和cos(β-
)的值,然后由两角和与差的余弦公式求出结果.
| π |
| 3 |
| π |
| 3 |
解答:解:∵0<a<
,0<β<
,
∴
<α+
<
-
<β-
<
∴sin(α+
)=
cos(β-
)=
cos(α+β)=cos[(α+
)+(β-
)]=cos(α+
)cos(β-
)-sin(α+
)sin(β-
)=
×
-
×(-
)=
.
故选A.
| π |
| 2 |
| π |
| 2 |
∴
| π |
| 3 |
| π |
| 3 |
| 5π |
| 6 |
| π |
| 3 |
| π |
| 3 |
| π |
| 6 |
∴sin(α+
| π |
| 3 |
| 12 |
| 13 |
| π |
| 3 |
| 4 |
| 5 |
cos(α+β)=cos[(α+
| π |
| 3 |
| π |
| 3 |
| π |
| 3 |
| π |
| 3 |
| π |
| 3 |
| π |
| 3 |
| 5 |
| 13 |
| 4 |
| 5 |
| 12 |
| 13 |
| 3 |
| 5 |
| 56 |
| 65 |
故选A.
点评:本题考查了两角和与差的余弦函数,考查计算能力,注意所求角与已知角的关系,属于基础题.
练习册系列答案
相关题目