题目内容
在数列{an}中,a1=1且an=a1+
a2+
a3+…
an-1(n≥2),则an等于
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n-1 |
n
n
.分析:由an=a1+
a2+
a3+…+
an-1(n≥2)①,得an+1=a1+
a2+
a3+…+
an-1+
an②,两式相减可得数列递推式,然后利用累加法可求得an.
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n-1 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n-1 |
| 1 |
| n |
解答:解:由an=a1+
a2+
a3+…+
an-1(n≥2)①,得
an+1=a1+
a2+
a3+…+
an-1+
an②,
②-①得,an+1-an=
an,整理得,
=
,
∴n≥2时,an=a1×
×
×…×
=1×
×
×…×
=n,
又a1=1适合上式,∴an=n,
故答案为:n.
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n-1 |
an+1=a1+
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n-1 |
| 1 |
| n |
②-①得,an+1-an=
| 1 |
| n |
| an+1 |
| an |
| n+1 |
| n |
∴n≥2时,an=a1×
| a2 |
| a1 |
| a3 |
| a2 |
| an |
| an-1 |
| 2 |
| 1 |
| 3 |
| 2 |
| n |
| n-1 |
又a1=1适合上式,∴an=n,
故答案为:n.
点评:本题考查由数列递推式求数列通项,属中档题,累加法是求解数列通项的常用方法,要熟练应用.
练习册系列答案
相关题目