题目内容
若
- A.大于1
- B.等于1
- C.小于1
- D.等于-1
A
分析:由sinθ+cosθ<-
<-1,得到sinθ与cosθ只能同时为负,再由sinθ-cosθ<0,得到sinθ小于cosθ,进而判断出
的值大于1,利用同角三角函数间的基本关系即可得到tanθ的值大于1.
解答:∵
,
∴sinθ<cosθ<0,
则tanθ=
>1.
故选A
点评:此题考查了同角三角函数间的基本关系,不等式的性质,以及正弦、余弦函数的值域,其中根据题意得出sinθ<cosθ<0是解本题的关键.
分析:由sinθ+cosθ<-
解答:∵
∴sinθ<cosθ<0,
则tanθ=
故选A
点评:此题考查了同角三角函数间的基本关系,不等式的性质,以及正弦、余弦函数的值域,其中根据题意得出sinθ<cosθ<0是解本题的关键.
练习册系列答案
相关题目
若A,B为锐角三角形的两个锐角,则tanAtanB的值( )
| A、不大于1 | B、小于1 | C、等于1 | D、大于1 |