题目内容
2.已知定义在区间[0,1]上的两个函数f(x)和g(x),其中f(x)=x2-ax+2(a≥0),g(x)=$\frac{{x}^{2}}{x+1}$.(1)求函数f(x)的最小值m(a);
(2)若对任意x1,x2∈[0,1],f(x2)>g(x1)恒成立,求a的取值范围.
分析 (1)根据一元二次函数的性质即可求函数f(x)的最小值m(a);
(2)将不等式恒成立转化为求函数的最值即可.
解答 解:(1)由f(x)=(x-$\frac{a}{2}$)2+2-$\frac{{a}^{2}}{4}$得m(a)=$\left\{\begin{array}{l}2-\frac{{a}^{2}}{4},0≤a<2\\ 3-a,a≥2.\end{array}\right.$.
(2)令0≤x0<${x}_{0}^{'}$≤1,
则g(x0)-g(${x}_{0}^{'}$)=$\frac{{x}_{0}^{2}}{{x}_{0}+1}$-$\frac{{x}_{0}^{'2}}{{x}_{0}^{'}+1}$=$\frac{({x}_{0}-{x}_{0}^{'})({x}_{0}{x}_{0}^{'}+{x}_{0}+{x}_{0}^{'})}{({x}_{0}+1)({x}_{0}^{'}+1)}$,
∵x0<${x}_{0}^{'}$,
∴x0-${x}_{0}^{'}$<0,∴$\frac{({x}_{0}-{x}_{0}^{'})({x}_{0}{x}_{0}^{'}+{x}_{0}+{x}_{0}^{'})}{({x}_{0}+1)({x}_{0}^{'}+1)}$<0,
即g(x0)<g(${x}_{0}^{'}$),
∴函数g(x)在[0,1]上为增函数,值域为[0,$\frac{1}{2}$],
由题设,得f(x2)min>g(x1)max,
故$\left\{\begin{array}{l}0≤a<2\\ 2-\frac{{a}^{2}}{4}>\frac{1}{2}\end{array}\right.$或$\left\{\begin{array}{l}a≥2\\ 3-a>\frac{1}{2}\end{array}\right.$,
解得0≤a<$\frac{5}{2}$,
所求a的取值范围为[0,$\frac{5}{2}$).
点评 本题主要考查一元二次函数最值的求解,以及不等式恒成立问题,利用导数求出函数的最值是解决本题的关键.
①点A,D′,H,F共面;
②直线EG与直线HF是异面直线;
③A′C⊥平面EFG;
④D′G∥平面A′DF.
| A. | ①② | B. | ②③ | C. | ②④ | D. | ③④ |