题目内容
某学生对函数f(x)=2x●cosx的性质进行研究,得出如下的结论:
①函数f(x)在[﹣π,0]上单调递增,在[0,π]上单调递减;
②点
是函数y=f(x)图象的一个对称中心;
③函数y=f(x)图象关于直线x=π对称;
④存在常数M>0,使|f(x)|≤M|x|对一切实数x均成立.
其中正确的结论是( )。
①函数f(x)在[﹣π,0]上单调递增,在[0,π]上单调递减;
②点
③函数y=f(x)图象关于直线x=π对称;
④存在常数M>0,使|f(x)|≤M|x|对一切实数x均成立.
其中正确的结论是( )。
④
练习册系列答案
相关题目