ÌâÄ¿ÄÚÈÝ
ÒÑÖªÊýÁÐ{bn}£¬Èô´æÔÚÕýÕûÊýT£¬¶ÔÒ»ÇÐn¡ÊN*¶¼ÓÐbn+r=bn£¬Ôò³ÆÊýÁÐ{bn}ΪÖÜÆÚÊýÁУ¬TÊÇËüµÄÒ»¸öÖÜÆÚ£®ÀýÈ磺ÊýÁÐa£¬a£¬a£¬a£¬¡¢Ù¿É¿´×÷ÖÜÆÚΪ1µÄÊýÁУ»
ÊýÁÐa£¬b£¬a£¬b£¬¡¢Ú¿É¿´×÷ÖÜÆÚΪ2µÄÊýÁУ»
ÊýÁÐa£¬b£¬c£¬a£¬b£¬c£¬¡¢Û¿É¿´×÷ÖÜÆÚΪ3µÄÊýÁС
£¨1£©¶ÔÓÚÊýÁТڣ¬ËüµÄÒ»¸öͨÏʽ¿ÉÒÔÊÇ
£¨2£©ÇóÊýÁТ۵ÄǰnÏîºÍSn£»
£¨3£©ÔÚÊýÁТÛÖУ¬Èôa=2£¬b=
¡¾´ð°¸¡¿·ÖÎö£º£¨1£©¸ù¾ÝÊýÁÐa£¬b£¬a£¬b£¬¡¿É¿´×÷ÖÜÆÚΪ2µÄÊýÁУ¬¿Éд³öÊýÁеÄͨÏ
£¨2£©ÊýÁÐa£¬b£¬c£¬a£¬b£¬c£¬¡¿É¿´×÷ÖÜÆÚΪ3µÄÊýÁУ¬¹Ê¿É·ÖÀàµÃ³ö½áÂÛ£»
£¨3£©ÓÉÌâÒ⣬¦Ø£¾0£¬Ó¦ÓÐ
£¬µÃ¦Ø=
£¬ÓÚÊÇbn=Asin£¨
n+¦Õ£©+B£¬°Ñb1=2£¬b2=
£¬b3=-1£¬´úÈëÉÏʽ£¬¼´¿ÉµÃ³ö½áÂÛ£®
½â´ð£º½â£º£¨1£©¡ßÊýÁÐa£¬b£¬a£¬b£¬¡¿É¿´×÷ÖÜÆÚΪ2µÄÊýÁУ»
¡àan=
µÈ£®£¨3·Ö£©
£¨2£©ÊýÁÐa£¬b£¬c£¬a£¬b£¬c£¬¡¿É¿´×÷ÖÜÆÚΪ3µÄÊýÁУ¬ËùÒÔµ±n=3k+1ʱ£¬
£»£¨5·Ö£©
µ±n=3k+2ʱ£¬
£»£¨7·Ö£©
µ±n=3k+3ʱ£¬
£¨k¡ÊN£©£®£¨9·Ö£©
£¨3£©ÓÉÌâÒ⣬¦Ø£¾0£¬Ó¦ÓÐ
£¬µÃ¦Ø=
£¬£¨10·Ö£©
ÓÚÊÇbn=Asin£¨
n+¦Õ£©+B£¬
°Ñb1=2£¬b2=
£¬b3=-1£¬´úÈëÉÏʽµÃ
£¨12·Ö£©
ÓÉ£¨1£©£¨2£©¿ÉµÃAcos¦Õ=
£¬ÔÙ´úÈ루1£©µÄÕ¹¿ªÊ½£¬¿ÉµÃ-
¦Õ+B=
£¬Ó루3£©ÁªÁ¢µÃB=
£¬£¨13·Ö£©
Asin¦Õ=-
£¬ÓÚÊÇtan¦Õ=-
ÒòΪ|¦Õ|£¼
£¬ËùÒÔ¦Õ=-
£¬£¨14·Ö£©
ÓÚÊÇ¿ÉÇóµÃA=
£®£¨15·Ö£©
¹Êbn=
sin£¨
£©+
£¨16·Ö£©
µãÆÀ£º±¾Ì⿼²éÊýÁÐÓëÈý½Çº¯ÊýµÄ×ۺϣ¬¿¼²éѧÉú·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬¿¼²é·ÖÀàÌÖÂÛµÄÊýѧ˼Ï룬ÓÐÒ»¶¨ÄѶȣ®
£¨2£©ÊýÁÐa£¬b£¬c£¬a£¬b£¬c£¬¡¿É¿´×÷ÖÜÆÚΪ3µÄÊýÁУ¬¹Ê¿É·ÖÀàµÃ³ö½áÂÛ£»
£¨3£©ÓÉÌâÒ⣬¦Ø£¾0£¬Ó¦ÓÐ
½â´ð£º½â£º£¨1£©¡ßÊýÁÐa£¬b£¬a£¬b£¬¡¿É¿´×÷ÖÜÆÚΪ2µÄÊýÁУ»
¡àan=
£¨2£©ÊýÁÐa£¬b£¬c£¬a£¬b£¬c£¬¡¿É¿´×÷ÖÜÆÚΪ3µÄÊýÁУ¬ËùÒÔµ±n=3k+1ʱ£¬
µ±n=3k+2ʱ£¬
µ±n=3k+3ʱ£¬
£¨3£©ÓÉÌâÒ⣬¦Ø£¾0£¬Ó¦ÓÐ
ÓÚÊÇbn=Asin£¨
°Ñb1=2£¬b2=
ÓÉ£¨1£©£¨2£©¿ÉµÃAcos¦Õ=
Asin¦Õ=-
ÒòΪ|¦Õ|£¼
ÓÚÊÇ¿ÉÇóµÃA=
¹Êbn=
µãÆÀ£º±¾Ì⿼²éÊýÁÐÓëÈý½Çº¯ÊýµÄ×ۺϣ¬¿¼²éѧÉú·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬¿¼²é·ÖÀàÌÖÂÛµÄÊýѧ˼Ï룬ÓÐÒ»¶¨ÄѶȣ®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿