题目内容
14.数列{an}的前n项和是Sn,若Sn=$\frac{1}{2}$nan+an-c,c是常数,a2=6.(1)求c值;
(2)证明:$\sum_{k=1}^{n}$$\frac{1}{{a}_{k}{a}_{k+1}}$<$\frac{1}{8}$.
分析 (1)通过在Sn=$\frac{1}{2}$nan+an-c中令n=1可知a1=2c,通过计算可知a1=S2-a2=a2-c,代入a2=6计算即得结论;
(2)通过(1)可知Sn=$\frac{1}{2}$nan+an-2,并与Sn+1=$\frac{1}{2}$(n+1)an+1+an+1-2作差、整理可知$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{n+2}{n+1}$,利用累乘法可知$\frac{{a}_{n}}{{a}_{1}}$=$\frac{n+1}{2}$,从而$\frac{1}{{a}_{n}}$=$\frac{1}{2}$•$\frac{1}{n+1}$,裂项可知$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{4}$•($\frac{1}{n+1}$-$\frac{1}{n+2}$),并项相加、放缩即得结论.
解答 (1)解:∵Sn=$\frac{1}{2}$nan+an-c,
∴S1=$\frac{3}{2}$a1-c,即a1=2c,
又∵S2=2a2-c,
∴a1=S2-a2
=(2a2-c)-a2
=a2-c,
∴2c=6-c,
解得:c=2;
(2)证明:由(1)可知Sn=$\frac{1}{2}$nan+an-2,
∴Sn+1=$\frac{1}{2}$(n+1)an+1+an+1-2,
两式相减得:an+1=$\frac{1}{2}$(n+1)an+1+an+1-$\frac{1}{2}$nan-an,
整理得:$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{n+2}{n+1}$,
∴$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{n+1}{n}$,$\frac{{a}_{n-1}}{{a}_{n-2}}$=$\frac{n}{n-1}$,…,$\frac{{a}_{2}}{{a}_{1}}$=$\frac{3}{2}$,
累乘可知$\frac{{a}_{n}}{{a}_{1}}$=$\frac{n+1}{2}$,$\frac{{a}_{n+1}}{{a}_{1}}$=$\frac{n+2}{2}$,
又∵a1=2c=4,
∴$\frac{1}{{a}_{n}}$=$\frac{2}{n+1}$•$\frac{1}{{a}_{1}}$=$\frac{1}{2}$•$\frac{1}{n+1}$,$\frac{1}{{a}_{n+1}}$=$\frac{2}{n+2}$•$\frac{1}{{a}_{1}}$=$\frac{1}{2}$•$\frac{1}{n+2}$,
∴$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{4}$•$\frac{1}{(n+1)(n+2)}$=$\frac{1}{4}$•($\frac{1}{n+1}$-$\frac{1}{n+2}$),
∴$\sum_{k=1}^{n}$$\frac{1}{{a}_{k}{a}_{k+1}}$=$\frac{1}{4}$($\frac{1}{2}$-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{4}$+…+$\frac{1}{n+1}$-$\frac{1}{n+2}$)
=$\frac{1}{4}$($\frac{1}{2}$-$\frac{1}{n+2}$)
<$\frac{1}{8}$.
点评 本题考查数列的通项及前n项和,注意解题方法的积累,属于中档题.
| A. | x=0或x=3 | B. | x≠0或x≠3 | C. | x≠0且x≠3 | D. | 不能确定 |
| A. | ($\frac{π}{12}$,0) | B. | ($\frac{π}{6}$,0) | C. | ($\frac{π}{4}$,0) | D. | ($\frac{π}{3}$,0) |