题目内容
已知数列{log2(an-1)}(n∈N*)为等差数列,且a1=3,a2=5,则
(
+
+…+
)=( )
| lim |
| n→∞ |
| 1 |
| a2-a1 |
| 1 |
| a3-a2 |
| 1 |
| an+1-an |
| A.2 | B.
| C.1 | D.
|
数列{log2(an-1)}(n∈N*)为等差数列,
设其公差为d,则log2(an-1)-log2(an-1-1)=d,
即
=2d,又由a1=3,a2=5,
则d=1,即
=2,
{an-1}是以a1-1=2为首项,公比为2的等比数列,
进而可得,an-1=2n,则an=2n+1,
故an-an-1=2n-2n-1=2n-1,
则
(
+
+…+
)=
(
+
+…+
)=1,
故选C.
设其公差为d,则log2(an-1)-log2(an-1-1)=d,
即
| an-1 |
| an-1-1 |
则d=1,即
| an-1 |
| an-1-1 |
{an-1}是以a1-1=2为首项,公比为2的等比数列,
进而可得,an-1=2n,则an=2n+1,
故an-an-1=2n-2n-1=2n-1,
则
| lim |
| n→∞ |
| 1 |
| a2-a1 |
| 1 |
| a3-a2 |
| 1 |
| an+1-an |
| lim |
| n→∞ |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 2n-1 |
故选C.
练习册系列答案
相关题目