题目内容
已知数列{log2(an-1)}(n∈N+)为等差数列,且a1=3,a2=5,则
+
+…+
=( )
| 1 |
| a2-a1 |
| 1 |
| a3-a2 |
| 1 |
| an+1-an |
分析:令bn=log2(an-1),(n∈N+),依题意可求得bn=n,于是可得an=2n+1,从而可求得
=
,利用等比数列的求和公式即可得到答案.
| 1 |
| an+1-an |
| 1 |
| 2n |
解答:解:令bn=log2(an-1),(n∈N+),依题意{bn}为等差数列,
∵a1=3,a2=5,
∴b1=log2(3-1)=1,b2=log2(5-1)=2,
∵{bn}为等差数列,设其公差为d,则d=1,
∴bn=n,
∴an=2n+1,
∴
=
=
,
显然{
}是首项为
,公比为
的等比数列,
∴
+
+
+…+
=
+
+
+…+
=
=1-(
)n.
故选C.
∵a1=3,a2=5,
∴b1=log2(3-1)=1,b2=log2(5-1)=2,
∵{bn}为等差数列,设其公差为d,则d=1,
∴bn=n,
∴an=2n+1,
∴
| 1 |
| an+1-an |
| 1 |
| (2n+1+1)-(2n+1) |
| 1 |
| 2n |
显然{
| 1 |
| 2n |
| 1 |
| 2 |
| 1 |
| 2 |
∴
| 1 |
| a2-a1 |
| 1 |
| a3-a2 |
| 1 |
| a4-a3 |
| 1 |
| an+1-an |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 23 |
| 1 |
| 2n |
=
| ||||
1-
|
| 1 |
| 2 |
故选C.
点评:本题考查数列的求和,根据题意求得an=2n+1是关键,考查等比数列的求和公式的应用,属于中档题.
练习册系列答案
相关题目