题目内容

已知△ABC三内角A、B、C的大小成等差数列,且tanA•tanC=2+数学公式,又知顶点C的对边c上的高等于4数学公式,求△ABC的三边a、b、c及三内角.

解:由A、B、C成等差数列,可得B=60°,
由△ABC中tanA+tanB+tanC=tanA•tanB•tanC,得 tanA+tanC=tanB(tanA•tanC-1)=(1+).
设tanA、tanC是方程x2-(+3)x+2+=0的两根,解得x1=1,x2=2+
设A<C,则tanA=1,tanC=2+,∴A=,C=
∵边c上的高等于4,∴sinB=,∴a=8.
由此利用正弦定理求得b=4,c=4+4.
分析:先求得B=60°,再由tanA+tanB+tanC=tanA•tanB•tanC,以及tanA•tanC=2+,求得tanA+tanC的值,从而求得tanA和tanC的值,进而求得A、C的值,由边c上的高等于4求得a,
再由正弦定理求得b、c的值.
点评:本题主要考查一元二次方程根与系数的关系,直角三角形中的边角关系,正弦定理的应用,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网