题目内容

已知△ABC三内角A、B、C所对的边a,b,c,且
a2+c2-b2
a2+b2-c2
=
c
2a-c

(1)求∠B的大小;
(2)若△ABC的面积为
3
3
4
,求b取最小值时的三角形形状.
分析:(1)根据正弦定理化简
a2+c2-b2
a2+b2-c2
=
c
2a-c
得出
cosB
cosC
=
sinB
2sinA-sinC
,进而得到2sinAcosB=sin(B+C),再根据B+C=π-A得,2sinAcosB=sinA,从而求出cosB,得出答案;
(2)首先利用由S△ABC=
1
2
acsinB=
1
2
acsin60°=
3
3
4
得, ac=3
,然后利用均值不等式b2=a2+c2-2accos60°≥2ac-ac=ac=3,求得即b≥
3
,b的最小值
3
,判断三角形为正三角形.
解答:解:(1)由
a2+c2-b2
a2+b2-c2
=
c
2a-c
a2+c2-b2
2ac
a2+b2-c2
2ab
=
b
2a-c

cosB
cosC
=
sinB
2sinA-sinC
,2sinAcosB-cosBsinC=sinBcosC,
即2sinAcosB=cosBsinc+sinBcosC,2sinAcosB=sin(B+C),
由B+C=π-A得,2sinAcosB=sinA,
∵sinA≠0,∴cosB=
1
2
, ∠B=60°

(2)由S△ABC=
1
2
acsinB=
1
2
acsin60°=
3
3
4
得, ac=3

∴b2=a2+c2-2accos60°≥2ac-ac=ac=3,当且仅当a=c=
3
时取等号,
b≥
3
,故当b取最小值
3
时,三角形为正三角形.
点评:本题考查了正弦定理以及三角形的判断,(2)问要注意均值不等式的利用,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网