题目内容
试比较x2+y2与xy+x+y-1的大小.分析:对两个式子x2+y2与xy+x+y-1作差,考查差的符号,做出大小的判定
解答:解:∵x2+y2-(xy+x+y-1)
=x2-(y+1)x+y2-y+1
=(x-
)2-
(y+1)2+y2-y+1
=(x-
)2+
(y-1)2≥0(10分)
∴x2+y2≥xy+x+y-1
=x2-(y+1)x+y2-y+1
=(x-
| y+1 |
| 2 |
| 1 |
| 4 |
=(x-
| y+1 |
| 2 |
| 3 |
| 4 |
∴x2+y2≥xy+x+y-1
点评:本题考查用作差法比较大小,得出差的结果形式为(x-
)2+
(y-1)2是关键.
| y+1 |
| 2 |
| 3 |
| 4 |
练习册系列答案
相关题目