题目内容

求证:函数f(x)=
2x
-x
在区间(0,+∞)上单调递减.
分析:利用单调性的定义来证明函数是一个单调函数,先设出任意两个正数变量,表明它们的大小关系,对两个变量对应的函数值做差,合并同类项,通分整理,最终形式是变化为因式的积或商的形式,这样就可以根据条件判断差和零的关系,得到结论.
解答:证明:任取0<x1<x2
f(x1)-f(x2)=
2
x1
-x1-(
2
x2
-x2)=(
2
x1
-
2
x2
)-(x1-x2)
=
2(x2-x1)
x1x2
-(x1-x2)=(x2-x1)•(
2
x1x2
+1)

因为0<x1<x2,所以x2-x1>0,
2
x1x2
+1>0
,即f(x1)-f(x2)>0
所以,函数f(x)=
2
x
-x
在区间(0,+∞)上单调递减.
点评:本题考查函数单调性的证明,考查对于代数式的整理,是一个基础题,这种题目经常考到,可以作为一个解答题目的一问出现,这种题目的证法一般只有两种,一是用定义,二是用导数.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网